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Abstract
It has been shown recently that lyotropic systems are convenient for studies of
faceting, growth or anisotropic surface melting of crystals. All these phenomena
imply the active contribution of surface steps and bulk dislocations. We show
here that steps can be observed in situ and in real time by means of a new method
combining hygroscopy with phase contrast. First results raise interesting
issues about the consequences of bicontinuous topology on the structure and
dynamical behaviour of steps and dislocations.

1. Introduction

1.1. Faceting and steps on surfaces of solid crystals

At the beginning of 19th century, René-Just Haüy hazarded a conjecture that faceted
shapes of solid crystals reveal a three-dimensional periodic positional order of hypothetical
molecules [1]. His visionary representations of crystal surfaces gave rise to the so-called
Facet–Step–Kink (FSK) model [2, 3] that has been used, among others, by Burton et al [4].
Since their seminal paper on the theory of crystal shapes and growth, a considerable number of
experimental studies proved that steps, forming closed loops or connected to bulk dislocations,
really exist on surfaces of solid crystals grown from vapour or liquid phases (melt or solution)
and that the order and motions of these steps determine the shapes of crystals. In particular,
such steps have been detected by optical phase contrast microscopy [5], laser confocal
microscopy [6], low-energy electron microscopy [7], scanning tunnelling microscopy [8] or
by atomic force microscopy (AFM) [9]. Recently, the optical and AFM techniques have been
combined in a study of spiraling steps on surfaces of KAP crystals growing from an aqueous
solution [10].

1.2. Faceting and new surface phenomena in liquid crystals

The generic idea of the present work is that the three-dimensional periodic positional order of
molecules, characteristic of a solid crystal, is not a necessary condition for faceting because
certain liquid crystals can have faceted shapes as well. Among thermotropic mesophases,
cholesteric blue phases [11, 12], smectic A [15, 16] and cubic phases [13, 14] can be quoted
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as typical examples. Let us emphasize that in this last case, AFM microscopy has been used
successfully for the detection of steps on free surfaces of supercooled samples.

In lyotropic systems, to our knowledge, the first observations of a faceting were made by
Winsor [17] at a cubic/micellar interface and later by Sotta [18] on air bubbles included in
the Ia3d phase. Subsequently, faceting in lyotropic systems was studied in more detail by
isoplethal and hygroscopic methods, and several new striking phenomena have been found to
occur at cubic/isotropic interfaces [19].

• The devil’s staircase-type rich faceting has been observed at Ia3d/vapour inter-
faces [20, 21]. As pointed out by Nozières, Pistolesi and Balibar (NPB) [22], the stability
of vicinal facets with large Miller indices, seen as ordered systems of steps in terms of the
FSK model, is due to a conjunction of a typical liquid/vapour interfacial tension with a
very large size of unit cells.

• Lyotropic cubic phases can also form interfaces with three liquid isotropic phases: two
micellar phases L1 and L2 and the sponge phase L3. In particular, experiments with the
Pn3m/L1 interface [23, 24] have shown that its faceting is poor, in agreement with the
NPB theory, because the tension of this interface between two liquid phases is much lower
that of the former liquid/vapour one.

• In cases where cubic crystals are surrounded either by water vapour or by almost pure
water, their shapes evolve under changes in humidity and/or temperature in spite of
a constant surfactant content. The so-called growth-by-redistribution or the inverse
dismantling-by-redistribution phenomena implied in these processes are specific for cubic
liquid crystals formed with huge unit cells containing a variable number of molecules
arranged into a partially liquid pattern. In terms of the FSK model, in the absence of bulk
dislocations, these growth- and dismantling-by-redistribution phenomena should imply
respectively nucleation or collapse of surface steps and their mobility. By analogy with
solid crystals, these growth and dismantling mechanisms should be modified drastically
in the presence of steps attached to dislocations, i.e. Frank–Read sources, in imperfect
crystals [2–4, 26].

• Under a saw-tooth shaped temperature or humidity cycling, the so-called ratchet-like effect
has been observed both at cubic/vapour and cubic/liquid interfaces [25]. In terms of
the FSK model, this effect should be due to an asymmetry in the behaviour of steps
during the alternating growth and dismantling episodes: during the growth, facets cannot
progress because they are blocked by a prohibitive barrier for step nucleation, while during
dismantling, facets recede because steps can always collapse.

• Shapes of cubic/vapour and cubic/liquid interfaces have been found to be very sensitive to
temperature and/or humidity gradients [19]. As cubic liquid crystals are nothing else but
organized solutions, this phenomenon can be seen as a manifestation of the Ludwig–Soret
effect [19, 27, 28]. On a microscopic scale, these changes in shapes should also involve
motions of steps.

• Finally, shapes and behaviour of steps should also be affected by the facet-by-facet surface
melting phenomenon observed in the vicinity of cubic/L1 or cubic/L2 transitions [29, 30].

In the light of this enumeration, the observation of steps at lyotropic interfaces, in situ
and in real time, appears as a means of a better microscopic description and understanding of
these new faceting phenomena. Unfortunately, the quite rudimentary optical systems used so
far in hygroscopic and isoplethal studies did not allow steps to be detected. Moreover, from
experiments on facet-by-facet melting of Ia3d monoolein/water crystals [19, 30] we learned
that performances of the hygroscopic setup in terms of humidity and temperature control should
be improved.
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Figure 1. New setup for hygroscopic studies equipped with phase contrast. The temperatures Tr

of the water reservoir and Ts of the sample holder are regulated independently, with respect to a
thermalized aluminium base, by Peltier elements.

In this context, the conception of an new, improved hygroscopic setup dedicated to the
observation of steps by phase contrast appeared as an experimental challenge.

The construction of this new setup is described in detail in the next section. Its
performances have been checked for the first time on Ia3d monoolein/water crystals. Results
reported in sections 3 and 4 prove that our expectations have been satisfied: we were
able to detect steps forming closed loops as well as steps connected to bulk dislocations
on (112) and (220) facets of Ia3d crystals. In the next section we prove, using general
symmetry arguments, that the observed features of steps connected to dislocations agree with
the theoretical relationship involving orientations of Burgers vectors, belonging to the body-
centred cubic (bcc) Bravais lattice, with respect to facets. The discussion of this relationship
is continued in the penultimate section in terms of the nodal approximation of the Ia3d
bicontinuous structure [31]. In particular, topological constraints imposed on surfaces and bulk
dislocations by bicontinuous structures of cubic phases are considered.

2. Hygroscopic setup dedicated to observation of steps

2.1. Humidity control

The setup depicted schematically in figure 1 can be qualified as a hygroscope of third
generation. In the first system used for studies of the devil’s staircase faceting of Ia3d/vapour
interface [20], humidity control was achieved by mixing dry and 100% humid gas fluxes.
Experiments with C12EO6, monoolein, DTACl and DDMAS have shown however that cubic
phases occur generally in the humidity range between 95 and 100% where this system of
humidity control is not the most accurate. For this reason, the principle of humidity control
was changed in the next version of the hygroscope [30]: the sample was enclosed in an almost
tight metallic cell containing a small reservoir of water and the relative humidity at the sample
level was a function of the temperature difference between water, in good thermal contact with
the cell, and the sample whose temperature was regulated independently. In order to improve
the accuracy of this system, the third generation system shown in figure 1 consists of three
parts.
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Figure 2. Phase diagrams of monoolein. (a) Temperature versus concentration from [32].
(b) Temperature versus humidity from [30]. Nucleation of Ia3d monocrystals from L2 droplets
occurs when the L2 → Ia3d transition is crossed along an isothermal path a few degrees above
the triple point TP. Dashed lines correspond to trajectories followed when the temperature Tr of the
water reservoir is kept fixed and the temperature of the sample is varied.

(This figure is in colour only in the electronic version)

(i) Large aluminium base of thickness 1.5 cm. Its temperature Tb is regulated by circulation
from a water bath.

(ii) Reservoir of water, made of copper. The (xz)-section shows that it is supported by two
Peltier elements that regulate its temperature Tr.

(iii) Sample holder, made of copper. The (yz)-section shows that it is supported by a second
pair of Peltier elements that regulate its temperature Ts.

In practice, the temperatures Tr and Ts are regulated with accuracy better than 0.01 ◦C. As
explained in [30], the relative humidity H at the sample level is given by the formula

H (Ts, Tr) = ps(Tr)

ps(Ts)
× 100% (1)

where ps(T ) expresses the dependence of the saturated vapour pressure at temperature T .
Knowing the accuracy δT = ±0.01 ◦C of temperature regulations, the corresponding accuracy
of the humidity control is about δH = ±0.05%. Let us note that the sample holder has a smaller
thermal inertia than the water reservoir. For this reason, in order to change the humidity, it is
more convenient to keep the temperature Tr of the water reservoir constant and to vary the
temperature Ts = Tr + �T of the sample holder. As a consequence, the T versus H phase
diagram is explored along slightly oblique paths, such as those indicated by dashed lines in
figure 2. For each path two parameters are pertinent: Tr = const and ∆T = Ts − Tr.

2.2. Optical phase contrast

The second major improvement in the new hygroscopic setup consists in using the phase
contrast optical set: a matched condenser–objective pair from a biological microscope. As
the light beam from the condenser passes through the layer of water, the capillarity-induced
curvature of the water surface can perturb the condenser–objective matching. For this reason,
the diameter of the water reservoir was made large enough (≈3 cm) to keep the water surface
flat. Images have been taken with a CCD camera.
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Figure 3. Enlargement of the (220) facet on an Ia3d crystal of monoolein by the ratchet effect.
Shapes (a)–(d) were obtained by four consecutive saw-tooth shaped humidity cycles. Let us
emphasize that in these photographs, obtained in transmitted light without phase contrast, steps
are not visible.

2.3. Know-how of genesis and shaping of Ia3d crystals

First experiments have shown that steps at the Ia3d/vapour interface are easily visible in phase
contrast only when they are located on large principal facets (112) or (220) orthogonal to the
optical axis. To satisfy these requirements, the following procedure was used.

(i) Materials: Experiments were made with Ia3d crystals of monoolein/water system studied
previously by hygroscopy [19, 30]. The main reason for this choice is that it offers
favourable conditions for the generation of Ia3d monocrystals.

(ii) Genesis of Ia3d crystals: From the temperature versus humidity phase diagram of
monoolein in figure 2 it results that at temperatures above 65 ◦C nucleation of Ia3d
monocrystals from L2 droplets occurs when the L2 → Ia3d transition line is crossed
along an isothermal path Tr = const passing above the triple point TP.

(iii) Orientation of Ia3d crystals: Ia3d crystals have to be oriented with (112) or (220)
principal facets parallel to the mica substrate. As explained in [30], orientations of Ia3d
crystals obtained by the L2 → Ia3d transition are usually random. Therefore, the
sequence of transitions L2 → Ia3d → L2 . . . was repeated until the suitable (112) and
(220) orientations were obtained.

(iv) Ratchet-like growth of facets: Once a monocrystal with a suitable orientation has been
nucleated from a L2 droplet, saw-tooth shaped cycles of humidity, contained in the
humidity range of the Ia3d phase, were applied. The purpose of this operation is
enlargement of principal facets by the ratchet-like effect discussed in [25] and illustrated
here by the series of four photographs in figure 3.

Let us emphasize that large facets generated by this procedure seem to be perfectly smooth
when observed in transmitted light without phase contrast.
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Figure 4. Nucleation and growth of elementary steps on the (220) facet of an Ia3d crystal
subsequent to a steep decrement of humidity �H = −0.5%. ((a)–(d)) Pictures taken at intervals of
3 s. Numbers label steps in the order of their nucleation from the dust particle indicated in (a) by
the arrow. The mobility of steps is anisotropic. Edges s and f of the step 4 in (c) are respectively
slow and fast. This anisotropy is identical in step 2 but inverted in steps 1, 3 and 5. The height of
steps is d220 = 35 Å. (e) Ia3d crystal habit composed of (112) and (220) sets of facets.

3. Steps forming closed loops

3.1. Nucleation and growth of steps on (220) and (112) facets

As the first example of the efficiency of the new hygroscopic setup equipped with phase contrast
we show in figures 4 and 5 nucleation and growth of steps on (220) and (112) facets of a Ia3d
crystal similar to the one in figure 3. Prior to the nucleation of steps, the two control parameters
Tr = 60 ◦C and �T = Ts − Tr = 0.6 ◦C were kept fixed for several minutes. The purpose of
this preliminary annealing is to ‘clean’ the facet, that is to say, to let the preexisting steps reach
the borders of facets or collapse.

After annealing, the nucleation of new steps is triggered by a steep increment �T = 0.1 ◦C
of the sample temperature corresponding, following equation (1), to a decrement �H =
−0.5% of humidity.

From previous experiments with monoolein we know that the unit cells of Ia3d crystals
shrink when the humidity decreases and as a consequence new cells must be created. If the
humidity variation rate dH/dt were to slow, the growth-by-redistribution mechanism would
lead to the formation of new unit cells exclusively on rough parts of the crystal surface. In
the hygroscopic setup, the order of magnitude of this rate is given by �H/τth, where τth,
the characteristic time of the temperature regulation, is of the order of 15 s. Typically, when
�T > 0.02 ◦C (i.e. �H < −0.1%), heterogeneous nucleation of steps on facets occurs.

In figure 4, steps are labelled by numbers 1 . . . 5 indicating the order of their nucleation
from the dust particle pointed out by the arrow. These first five steps, nucleated in a short time
interval of 3 s after the decrement of humidity, are followed by other steps. The total number
of nucleated steps depends on the amplitude of the decrement �H as well as on the thickness
of the crystal. Typically, for �H = −0.5%, about 20 steps are nucleated. It is clear from
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Figure 5. Nucleation and growth of elementary steps on a (112) facet of an Ia3d crystal of
monoolein. ((a)–(c)) Nucleation of a step on a dust particle. The mobility of steps is anisotropic.
Edges s and f are respectively slow and fast. ((d)–(f)) System of growing steps. All steps are
identical. (g) Ia3d crystal habit composed of (112) and (220) sets of facets.
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Figure 6. Role of the glide plane d on the shapes of steps. (a) Definition of the glide plane.
(b) Symmetry of steps induced by the glide plane d.

the series of four pictures in figure 4 that the mobility of steps on this facet is anisotropic. For
example, edges s and f of step 4 in picture (c) are respectively slow and fast. This anisotropy is
identical for step 2 and for all even steps but is inverted for steps 1, 3, 5 and, in general, for all
odd steps.

Figure 5 illustrates nucleation and growth of steps on the (112) facet. The first three
pictures ((a)–(c)) show nucleation of a new step on a dust particle and its subsequent anisotropic
growth. Obviously, the mobility of this step is also anisotropic: edges s are slow while f are
fast. The three other pictures ((d)–(f)) prove that, unlike on the (220) facet, all steps nucleated
on the (112) facet have identical anisotropic mobilities.

3.2. Shapes of steps and Ia3d symmetry

This striking difference in shapes of steps on (220) and (112) facets, summarized in figure 6(b),
reveals in fact the Ia3d symmetry of the lyotropic crystal. Indeed, one of special features of
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Figure 7. Spiral shaped step connected to a dislocation emerging on a (112) facet.

this space group is that it contains non-symmorphic symmetry operations such as the glide
plane d . As shown in figure 6(a), this symmetry operation consists in a mirror reflection in the
(2̄20) plane followed by the partial translation �d (along the diagonal axis [111̄]) of length d222.

Now, as shown in figure 6(b), both (220) and (112) facets are orthogonal to the mirror
plane (2̄20). However, the partial translation �d has different orientations with respect to these
facets. On the one hand, �d is parallel to the (112) facet and much shorter than it. Therefore,
the shape of an elementary step of height d211 on this facet is invariant with respect to the
mirror reflection. Let us emphasize that if the height of the step were a multiple of d211, the
same would be true. On the other hand, �d is oblique with respect to the (220) facet so that the
mirror reflection links now two successive elementary steps of height d220, in agreement with
experiments.

We can conclude therefore on a symmetry basis that the steps shown in figure 4 are
elementary. For the steps shown in figure 5, we can only conjecture that they are elementary
because in practice their optical contrast is the lowest one. The heights of the steps can be
deduced from x-ray studies of the monoolein/water system [32]. Knowing the size of the cubic
unit cell, a ≈ 100 Å, one gets respectively h = d220 ≈ 35 Å and h = d112 ≈ 41 Å.

4. Steps connected to dislocations

After successful visualization of steps forming closed loops, our next challenge was to find
steps ‘with ends’, connected to dislocations emerging on facets. We have found that on
very clean facets (without nucleation centres), a large decrement in humidity �H ≈ −1.5%
corresponding to �T ≈ +0.3 ◦C results in the generation of spiral shaped steps. Why and how
dislocations connected to such steps are created is a question that we will not try to answer
here.

4.1. Dislocations emerging on (112) facets

In figure 7 we show a typical spiral shaped step connected to a dislocation emerging on a (112)
facet. In the real-time video sequence taken during a growth-by-redistribution episode, the
observer has an impression of seeing a rotating spiral. In fact, this series of pictures taken at
intervals of 1/10 s shows that motions of the step and of the dislocation are more complex.

Another example of steps connected to dislocations is shown in figure 8. In this texture,
two different types of dislocation, 1 and 2, are emerging on the (112) facet. Dislocation 1
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Figure 8. Steps of two different heights, simple and double, connected to dislocations, 1 and 2,
emerging on a (112) facet. During the growth-by-redistribution process, steps are moving and the
double step splits into two simple steps.
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Figure 9. Pair of spiral shaped steps connected to the dislocation emerging on the (220) facet.
Series of pictures taken at intervals of 0.3 s during a growth-by-redistribution episode.

is connected to an optically thin step while dislocation 2 is connected to a thick step. This
sequence of four images taken at intervals of 1/4 s shows that the thick step labelled ‘double’
splits into two thin steps labelled ‘simple’.

In all other observations only these two types of dislocation have been identified.

4.2. Dislocations emerging on (220) facets

On the (220) facet, dislocations of only one type always with two elementary steps connected
to them were observed. An example of the double spiral formed by these two steps during
the growth-by-redistribution process is shown in figure 9. It has a peculiar shape due to the
anisotropic mobilities of the two steps discussed previously in section 3.1.

To understand this feature of growth spirals on the (220) facet better, let us consider
the schemes in figure 10(a) representing the configuration of two elementary spiral shaped
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Figure 10. Pair of spiral shaped steps connected to the dislocation emerging on the (220) facet.
(a) Decomposition of steps into segments ai and bi . (b) Fast and slow segments drawn respectively
with thick and thin lines. (c) Fast segments catch up slow ones.

steps connected to the dislocation. These steps, a and b, are composed of segments: a1,
a2, a3 . . . for one step and b1, b2, b3 . . . for the second one. We know from section 3.1 that
differently oriented pairs of segments on closed-loop steps have different mobilities, slow and
fast, alternating from step to step. For this reason, segments drawn with thick and thin lines
in figure 10(b) are respectively fast and slow. During the growth, the first segment b1 of the
step b is fast so it catches up the slow one a1 of the step a and subsequently the two steps form
a pair a1b1 moving together (figure 10(c)). The next segment b2 of the step b is slow so it is
caught up by the fast segment a6 of the step a. Subsequently, the pair b2a6 is moving together.
As a result, segments of the two steps are generally associated into pairs a2n+1b2n+1 alternating
with pairs b2na2n+4. When the direction of steps changes, pairs a2n+1b2n+1 are dissociated into
simple steps that recompose again into pairs b2na2n+4.

5. Relationship between steps and dislocations

5.1. General rules

In order to deepen the interpretation of results concerning steps connected to dislocations
we have first to recall the dislocation–step relationship involved in the Frank–Read growth
mechanism [22, 26, 3].

Let �b be the Burgers vector of the dislocation drawn in figure 11 and �t its director (a
unit vector parallel to the dislocation line). In the simplest text-book configuration shown
in figure 11(a), a pure screw dislocation with �b ‖ �t is orthogonal to the facet. At its point
of emergence on the facet, there starts a step of height h = |�b|. In contrast, the facet
stays flat when the dislocation emerging at the facet is of the pure wedge type with �b ⊥ �t
(figure 11(b)).

In the most general case (figures 11(c) and (d)), the formation of the step connected to
the emerging dislocation is determined by the Burgers vector �b alone; the direction of the
dislocation �t does not matter. More precisely, the height h of step is equal to the component b⊥
of the Burgers vector perpendicular to the facet. We have therefore to examine orientations of
Burgers vectors with respect to (220) and (112) facets.

For energetic reasons, only the shortest Burgers vectors have to be considered. In the case
of Ia3d crystals having the bcc Bravais lattice, the shortest Burgers vectors connect the centre
of the cubic unit cell with its vertices (figure 12).
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Figure 12. Orientations of Burgers vectors with respect to facets. (a) (220) facet: two types, (i) and
(ii), of Burgers vector. (b) (112) facet: three types, (i), (ii) and (iii), of Burgers vector.

5.2. Step–dislocation relationship, (220) facets

In the case of the (220) facet (figure 12(a)), this set of eight Burgers vectors splits into two
subsets:

(i) the four vectors drawn with dashed lines are parallel to the facet and do not produce steps,
(ii) the four other vectors drawn with plain lines form the same angle with the facet and have

the same orthogonal component b⊥ = 2d220.

In conclusion, dislocations emerging on the (220) facet either do not produce any step or
produce double steps.

5.3. Step–dislocation relationship, (112) facets

In the case of the (112) facet (figure 12(b)), the set of eight Burgers vectors splits into three
subsets:
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Figure 13. Splitting of steps due to dissociation of buried dislocations. (a) Buried dislocation of
type (iii) producing a double step on the (112) facet. Its Burgers vector is drawn with a thick plain
line in (c). (b) Dissociation of the dislocation of type (iii) into two dislocations of type (ii) producing
simple steps and one dislocation of type (i). (c) Conservation law of Burgers vectors of dissociated
dislocations.

(i) the two vectors drawn with dashed lines, parallel to the facet, do not produce steps,
(ii) the four vectors drawn with thin plain lines form the same (small) angle with the facet and

have the same orthogonal component b⊥ = d112,
(iii) the two vectors drawn with thick plain lines form the same (large) angle with the facet and

have the same orthogonal component b⊥ = 2d112.

In conclusion, dislocations emerging on the (112) facet can produce either simple or double
steps.

6. Structures of facets and steps

All the above considerations about steps and dislocation were made exclusively on the basis of
the Ia3d symmetry. It is however tempting to take into account special features of the Ia3d
cubic lyotropic phase such as its elastic softness and its bicontinuous structure.

6.1. Steps or buried dislocations in soft crystals?

In terms of the faceting theory of soft crystals developed by Nozières et al [22], steps occurring
on surfaces of soft crystals could in fact be due to dislocations buried below the crystal/vapour
interface. Are our observations compatible with this model? This question should in particular
be addressed to the case of double steps attached to dislocations of type (iii) emerging on (112)
facets. Experiments reported in section 4 tell us that one double step on a (112) facet can split
into two simple steps (see figure 8). Let the double step be due to a buried dislocation of type
(iii) (see figure 13(a)) with Burgers vector [111]/2 drawn with a thick plain line in figure 13(c).
Then, the two simple steps could be due to buried dislocations of type (ii) (see figure 13(b))
with Burgers vectors [11̄1]/2 and [1̄11]/2. However, such a splitting of one dislocation of type
(iii) into two dislocation of type (ii) would not satisfy the conservation law of Burgers vectors.
In fact, in addition to these two dislocations of type (ii), one dislocation of type (i) with the
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Figure 14. Spherical cross-section of the bicontinuous Ia3d structure. The lower inset shows water
labyrinths A and B separated by bilayer. The upper inset shows two steps formed on the (112) facet.

Burgers vector [111̄]/2 also results from this splitting in agreement with:
[

1
2 ,

1
2 ,

1
2

] = [− 1
2 , 1

2 , 1
2

] + [
1
2 ,− 1

2 , 1
2

] + [
1
2 ,

1
2 ,− 1

2

]
. (2)

As this third dislocation is of type (i), with its Burgers vector parallel to the (112) facet, it does
not give rise to a step and cannot be detected by optical phase contrast.

In conclusion, if the steps observed in our experiments were due to buried dislocations,
the observed splitting of double steps into simple steps would correspond to splitting of one
emerging dislocation into three buried dislocations. Such a process that seems to have an
unfavourable energetic balance has not been considered in [22].

6.2. Reconstruction of the Ia3d/vapour interface

In the opposite limit of steps located at the crystal/vapour interface, the bicontinuous topology
of the Ia3d phase may play an important role. Indeed, the Ia3d cubic phase of monooelein has
an inverted bicontinuous structure in which the surfactant bilayer has shape of the gyroid IPMS
separating two labyrinths related by the inversion symmetry and filled with water. In the bulk of
a perfect crystal, the surfactant bilayer is supposed to be continuous, without edges, but on the
surfaces, some reconstruction must occur. To imagine what kind of reconstruction is plausible,
let us examine the spherical cross-section of a perfect Ia3d crystal shown in figure 14(a). This
drawing was made by means of the Pov-Ray freeware using the isosurface command with the
function

f (x, y, z) = cos(x) ∗ sin(y) + cos(y) ∗ sin(z) + cos(z) ∗ sin(x) (3)

invariant with respect to the Ia3d space group. In figure 14(a), water labyrinths A and B,
represented respectively in grey and black, are separated by the surfactant bilayer drawn as a
double white line in figure 14(b). The edges of the bilayer cut by the sphere can be healed at
least by two processes.
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a b c

Figure 15. Emergence of dislocations on the (112) facet: (a) type (i) (b) type (ii), (c) type (iii)
(types defined in figure 12(b)).

(i) One can use patches of appropriate shapes made of a bilayer and ‘sew’ them on one of
the labyrinths. As a result, this labyrinth is enclosed inside the bilayer while the second
one remains open. This process, which breaks the A–B symmetry [24, 31], would be
appropriate if the bicontinuous phase were surrounded by water.

(ii) One can also use patches made of a monolayer and ‘sew’ them on the two labyrinths.
This process seems to be more appropriate in the case of Ia3d/vapour interface because
it introduces surfactant monolayers at water/vapour interfaces, like in soap bubbles. It
preserves the A–B inversion symmetry of the Ia3d phase.

6.3. Steps on reconstructed Ia3d/vapour interface

Let us suppose that the reconstruction of the second type occurs effectively at the Ia3d/vapour
interface so that the bright lines in the spherical cross-section in figure 14(a) can be seen as
linear defects due to splitting of the bilayer into the two monolayers. In order to minimize
the energy of these defects, regions with low and high density of these defects will form
respectively extended terraces and localized steps [33].

Following this ad hoc model, reconstruction of the pattern in the centre of the cross-section
in figure 14(a) leads to the formation of the two steps on the (112) facet depicted in figure 14(c).

6.4. Steps and dislocations

Using the same software, we have also drawn spherical cross-sections of Ia3d crystals with
dislocations emerging on facets. In figures 15 and 16 we show patterns due to all types of
dislocation defined previously (see figure 12). In agreement with experiments,

on the (112) facet:

(i) a dislocation of type (i) with its Burgers vector parallel to the facet does not produce steps,
(ii) a dislocation of type (ii) with its Burgers vector oblique to the facet produces one

elementary steps,
(iii) a dislocation of type (iii) with its Burgers vector almost normal to the facet produces two

elementary steps;

on the (220) facet:

(i) a dislocation of type (i) with its Burgers vector parallel to the facet does not produce steps,
(ii) a dislocation of type (ii) with its Burgers vector oblique to the facet produces two

elementary steps.
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Figure 16. Emergence of dislocations on the (220) facet: (a) type (i) (b) type (ii) (types defined in
figure 12(a)).

7. Conclusions and perspectives

The new hygroscopic setup equipped with optical phase contrast fulfilled our expectations.
Using it, several new significant results have been obtained.

• Steps on (112) and (220) facets have been detected.
• We have shown that steps can either form closed loops or be attached to dislocations

emerging on facets.
• By means of appropriate humidity variations, we were able to control the nucleation,

collapse and changes in size and shape of closed-loop steps as well as the nucleation and
evolution of steps connected to dislocations.

• Polygonal shapes taken by steps during growth episodes revealed that the mobilities of
steps are anisotropic. In particular, the alternating anisotropy of successive steps on the
(220) facet is a fingerprint of the glide plane d typical of the Ia3d symmetry.

• The occurrence of simple and double steps connected to dislocations emerging on the (112)
facet is also a fingerprint of the bcc Bravais lattice of the Ia3d symmetry group.

Let us note these all results reported here, obtained for the first time with Ia3d crystals of
monooelein, have been confirmed in all details in subsequent experiments with Ia3d crystals
of phytantriol (which has a T versus H phase diagram [30] similar to the one of monoolein).

In the near future, we intend to apply the new hygroscopic setup for more detailed
studies of phenomena enumerated in the introduction. In particular, the facet-by-facet surface
melting [30] deserves more attention. Indeed, preliminary experiments have shown that shapes
of steps depend much on the ‘distance’ �H from the Ia3d → L2 transition line. Roughly
speaking, for large �H , the growth shapes of steps are polygonal, made of straight segments
meeting at sharp angles, while in the vicinity of the Ia3d → L2 transition, these angular
discontinuities disappear and steps become rough. One can therefore speculate that melting of
facets and changes in shapes of steps are related.
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